Edit... JSPWiki v2.2.28 |
Der Unterschied zwischen version 84 und version 17: ! Das Earthdawn 2 Stufensystem
<<__Das Weil die Würfel in Earthdawn explodieren (d.h. man darf weiterwürfeln, wenn sie auf die höchste Zahl fallen), ist der Durchschnittswurf eines einzelnen Würfels immer etwas höher als der Mittelwert aller Würfelseiten. Die >> größte Abweichung nach oben haben dabei <<ganz >> kleine <<Stufen, || | 3 | W4 | 3,3333 | 4 | W6 | 4,2 | 5 | W8 | 5,1429 | 6 | W10 | 6,1111 | 7 | W12 | 7,0909 | (11*) | W20 | 11,0526 >> Um eine Stufe, bzw. den durchschnittlichen Wert, den man mit den Würfeln <<erzielen <<(*) Stufe 11 könnte man als einzelnen W20 ausdrücken, nach der offiziellen Tabelle ist es aber 1W10,1W8, was sogar eine schlechtere Abweichung vom Mittelwert hat (11,25 statt 11,05). Warum macht man das dann überhaupt? Neben dem Durchschnittswurf spielt auch das Verteilungsmuster eine sehr wichtige Rolle. Für einen einzelnen Würfel gilt, dass jede Zahl gleich wahrscheinlich ist - bis auf das Weiterwürfeln, denn dann nimmt die Wahrscheinlichkeit jedes Mal schlagartig ab. Für einen W6 ergibt sich z.B. folgendes Bild: [w6.png] ''Jede Zeile steht dabei für eine Zahl, die man mit seinem Wurf erreichen kann, und der grüne Balken gibt an, wie wahrscheinlich es ist, diese Zahl zu erreichen.'' Für Stufen mit mehreren Würfeln kann der Durchschnittswurf grob errechnet werden, indem man die Durchschnittswürfe der Einzelwürfel aufaddiert. Allerdings ist das nicht ganz exakt, weil man es mit Kombinationen diskreter Werte zu tun hat und nicht mit kontinuierlichen Funktionen. Im folgenden Beispiel - Stufe 11 mit W10,W8 - sieht man das am Knick unterhalb des Maximums: [w10w8.png] Hier wird dann auch klar, warum man Stufe 11 als W10,W8 und nicht als W20 würfelt - die Verteilung der Würfe entspricht dann mehr einer schönen glatten [Glockenkurve|https://de.wikipedia.org/wiki/Normalverteilung]. Die meisten Würfe entsprechen dann ungefähr der Stufe, während man bei einem einzelnen Würfel viel häufiger auch mieserabel kleine Zahlen würfelt. Je mehr Würfel man hat, je höher also die Stufe, desto idealer die Verteilung, wie man gut bei Stufe 30 (1W20,1W10,1W8,2W6) sieht: [step30.png] Für alle Stufen gilt: Die Abweichungen des Durchschnittswurfes zur Stufe bleiben immer im Bereich ±⅓, und je höher die Stufe, desto wahrscheinlicher ist es, ungefähr die Stufe zu würfeln. !Der Fluch der kleinen Stufen Hier zeigt sich direkt ein großes Problem im Earthdawnsystem, das gerade bei den beliebten Attributsproben gnadenlos zuschlägt, welche besonders zufallsfetischistische Meister gerne und oft rollen lassen. Im folgenden Diagramm sieht man zu jeder Stufe von 3 bis 10 die Wahrscheinlichkeit, einen bestimmten Wert zu treffen (diesmal liegend): [Einzelwahrscheinlichkeit.png] Dabei fällt auf, dass es bis Stufe 7 (W12) genauso wahrscheinlich ist, eine 1 zu würfeln __wie jede andere Zahl des Würfels__. Ganz anders ab Stufe 8, wo zum ersten Mal mit 2 Würfeln gewürfelt werden kann - hier ist die Wahrscheinlichkeit, eine 1 oder eine andere kleine Zahl zu würfeln, extrem viel geringer als ungefähr eine Zahl um die Stufe herum zu treffen. Es ist demnach sehr wahrscheinlich, mit einer kleinen Stufe zu versagen, und das gilt folglich für fast alle Attributsproben. Gerade wenn man ein Attribut recht hoch hat, aber eben noch nicht in der rettenden Stufe 8, muss man mit vielen Patzern leben, die eigentlich sehr unlogisch sind - denn warum sollte ein heldenhaft starker Charakter der Stufe 7 ähnlich oft bei einer Stärkeprobe versagen wie ein Pimpf, aber ein nur einen Attributspunkt stärkerer Charakter mit Stufe 8 kaum noch patzen? Zumindest als Master sollte man sich das vor Augen führen und entsprechend weniger Attributsproben verlangen, und wenn es denn sein muss, dann doch wenigstens vorsichtiger mit der Interpretation solcher Proben umgehen, besonders was den krassen Sprung zwischen Stufe 7 auf 8 angeht. >> !Stufentabelle und Mindestwürfe<< bis Stufe 350 >> <<Bleibt die Frage, wie die Stufen denn nun genau auf die Würfel zugeordnet wurden. Man kann schließlich immer mehrere Kombinationen von Würfeln finden, die ungefähr der Stufe entsprechen. Tatsächlich ist die Zuordnung in Earthdawn manchmal nicht ideal, wenn man voraussetzt, dass man möglichst genau die Stufe treffen möchte. Allerdings gibt es ja noch eine andere wichtige Eigenschaften des Stufensystems - zum einen möchte man möglichst eine Normalverteilung, zum anderen aber auch mit möglichst wenigen Würfeln auskommen, denn was nützt es schließlich, wenn man die Stufe mit 18W4 exakt und mit einer wunderschön glatten Glockenkurve trifft, aber kein Mensch so viele W4 hat, und selbst wenn (echt?), dann bestimmt nicht gewillt ist, die alle zu würfeln. Entsprechend muss man eine Abwägung treffen. Für Earthdawn 2 gibt es offizielle Stufentabellen bis Stufe 150 (englischer Gamemaster Schirm). Aber man kann natürlich alles übertreiben, und so - tada - präsentiere ich hier die >> Stufentabelle und Mindestwürfe bis hin zur <<__absurd [https://docs.google.com/spreadsheets/d/1pXU-ZbDvegyCAfH4T_QRepXRpr8SYrGHHIHbMPRyj4g/pubhtml#] << Wenn >> -- [Sebastian] << Die folgende Tabelle gibt die gemittelte Wahrscheinlichkeit über alle Stufen an, mit einer gegebenen Stufe einen Erfolgsgrad zu erreichen: <<||Schlecht >> ||Mindestwurf || << | <<88% <<! Mathematik >> Wie berechnet man die <<exakte >> Wahrscheinlichkeit, mit Stufe x Wert y zu erreichen? Das ist überraschend schwer, da die Würfel in Earthdawn "explodieren", also beim höchsten Wurf nochmal gewürfelt werden und deshalb beliebig große Werte erreichen können. Eine <<einzelne ;[http://www.diku.dk/~torbenm/Troll/]: (english) Eine Würfel-Programmiersprache, eingehende theoretische Arbeit dazu >> und <<und ein Onlinetool zur Berechnung so ziemlich jeder Würfelwahrscheinlichkeit eines jeden noch so abgedrehten Rollenspielsystems ;[http://www.mediafire.com/view/11pi8i998cjh0rc/earthawndice.pdf]: (english) Herleitung und beispielhaft die Formeln >> bis <<Stufe ;[beweis-ed-stufen.pdf]: (deutsch) Mathematischer Beweis, dass die Stufen den Durchschnittswürfen entsprechen ;[http://vfu.bg/en/e-Learning/Math--Bertsekas_Tsitsiklis_Introduction_to_probability.pdf]: (english) Allgemeine Einführung in die Wahrscheinlichkeitstheorie \\\ ----\\\ \\\ ''Zum ''"Der Fluch der kleinen Stufen"'': Ich vermute, es ist bewusst so gewählt. Der enorme Sprung zwischen >> Stufe <<7 Außerdem hat man auch (fast) immer die Möglichkeit Fertigkeiten zu lernen, wenn gewisse Proben häufiger vorkommen, oder man hilft sich durch Gegenstände weiter. Spielen viele Abenteuer in den Bergen oder hat man einen "feigen" Schützen, der gerne von erhöhter Position aus schießt, lernt man eben Klettern, anstatt immer Geschicklichkeitsproben zu machen. Der Elementarist hat bereits im ersten Kreis [Kletterschub], ein Seil erleichtert das Klettern auch um 4 und und und.\\\ Andere Spielsysteme haben hingegen für jede einzelne >> nur <<erdenkliche \\ ''Sieht für mich eher nach einem Kompromiss aus, >> weniger <<nach \\ ''Mich hat die Frage beschäftigt, was für einen Würfel man bräuchte, wenn man eine möglichst optimale Normalverteilung haben möchte. Wahrscheinlichkeitsrechnung geht normalerweise leicht über meine Kenntnisse, aber durch Versuch und Fehler war ich letztlich in der Lage: Bei einem W4 mit >> den <<Seiten --[THEINFERNALVerjigorm]\\ \\ ''Hi Verjigorm, hab' nicht ganz verstanden, wie du das meinst. Meinst du mit optimale Normalverteilung eine schöne runde Gaußsche Glockenkurve? Der nähert man >> sich <<an, wenn man immer mehr Würfel im Becher hat. Was meinst du beim w4 und den Seiten 0,6/0,7...?'' -- [Sebastian]\\ \\ ''Mh, bin eigentlich davon ausgegangen, dass ich mich verständlich ausgedrückt hatte... nunja.\\ Ich meinte damit die Glockenkurve, die ja als Ideal für die Würfe >> in <<Earthdawn <<Die perfekte Lösung wären vierseitige Würfel mit den Werten 0,6/0,7/0,8/0,9. Durch die unbgrenzte Würfelexplosion bei ED konvergiert der Erwartungswert gegen 0,999999... Nimmt man also für jede Stufe einen solchen Würfel hat man schon bei Stufe 2 eine Glockenkurve (wenn auch keine besonders schöne). Das ganze hat natürlich den Nachteil, dass man nicht mehr mit ganzzahligen Zahlen addieren kann. Deswegen schwebte mir die Lösung für einen Würfelgenerator vor: Der kann automatisch addieren und je höher die Stufe, desto idealer die Glockenkurve. Dummerweise hab ich trotz intensiver Suche keinen Würfelgenerator gefunden, der es erlauben würde, vom Konzept der ganzzahligen Würfelseiten abzuweichen.\\ >> <<Alternativ <<Ich <<-- \\ ''Sehr <<\\ ''Sowas <<-- [THEINFERNALVerjigorm]\\ Zurück zu Earthdawn Wahrscheinlichksrechnung, or zur History der Seite.
Earthdawn (R) ist ein eingetragenes Warenzeichen der FASA Corporation. Barsaive (TM) ist ein Warenzeichen der FASA Corporation. Copyright (c) 2015 by FASA Corporation. Copyright der deutschen Ausgabe (c) 2015 by Ulisses Spiele GmbH, Waldems. www.ulisses-spiele.de. Diese Webseite unterliegt keiner Abnahme oder Genehmigung durch Ulisses Spiele oder FASA.
|